
M.Sc. Holger Trittenbach
- Wissenschaftlicher Mitarbeiter
- Raum: 338
- Tel.: +49 721 608-44066
- Fax: +49 721 608-47343
- holger trittenbach ∂does-not-exist.kit edu
- dbis.ipd.kit.edu/trittenbach.php
Lehrstuhl
Prof. K. BöhmKarlsruher Institut für Technologie
Institut für Programmstrukturen und Datenorganisation
Am Fasanengarten 5,
76131 Karlsruhe
GERMANY
Research Abstract
Energy status data is typically time related and contains useful information to understand real world systems. Advanced measurement technology allows to collect data from such systems with high dimensionality and high volume. For example, in a production facility, modern smart meters allow to measure different physical quantities like voltage, frequency and harmonic distortion. With sample rates up to multiple measurements per second, these devices produce huge amounts of data. The data collected can give an indication about the behavior of machines and the quality of the electrical grid. In such a scenario, it is often of interest to detect unusual patterns which can reveal system misconfiguration or predict critical failures.
Most approaches to detect unusual patterns leave the interpretation of algorithmic results to the user. In addition, users need an advanced understanding of the detection methods to be able to adapt the algorithms to their needs. In the case of supervised learning, users must also provide the algorithm with additional ground truth information, such as the labeling of already known unusual patterns. The high dimensionality and the enormous volume of energy data makes this a challenging and time consuming task.
Focus of the doctoral thesis is to develop new approaches which utilize user feedback to advance the identification and interpretation of unusual patterns for high- dimensional data sets. There are two sides to this problem. First, the attention of a user is a scarce resource. Hence, mechanisms to request additional information from the user need to be designed carefully. Second, most methods for high-dimensional outlier detection are unsupervised and have no means to make use of labeled data. This calls for novel methods that consider both aspects. In addition, evaluation of novel approaches in this area is a challenge by itself. Not all identified anomalous patterns might be of interest to the user and the extent of interest can depend on individual preferences. This makes the quantification of interpretability and usefulness an open research task.
Publikationen
Bach, J.; Zoller, K.; Trittenbach, H.; Schulz, K.; Böhm, K.
2022. SN Computer Science, 3 (6), Art.-Nr.: 445. doi:10.1007/s42979-022-01338-z
Englhardt, A.; Trittenbach, H.; Kottke, D.; Sick, B.; Böhm, K.
2022. doi:10.48550/arXiv.2009.13853
Englhardt, A.; Trittenbach, H.; Kottke, D.; Sick, B.; Böhm, K.
2022. Machine Learning, 111 (4), 1349–1375. doi:10.1007/s10994-022-06149-0
Renftle, M.; Trittenbach, H.; Müssener, C.; Böhm, K.; Poznic, M.; Heil, R.
2021. Philosophy of Science meets Machine Learning (2021), Tübingen, Deutschland, 9.–12. November 2021
Trittenbach, H.; Böhm, K.; Assent, I.
2020. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics: 6-9 Ocotber 2020, Sydney, Australia. Ed.: G. Webb, 109–117, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/DSAA49011.2020.00023
Trittenbach, H.; Englhardt, A.; Böhm, K.
2021. Expert systems with applications, 168, Art. Nr.: 114372. doi:10.1016/j.eswa.2020.114372
Englhardt, A.; Trittenbach, H.; Vetter, D.; Böhm, K.
2020. Proceedings of the 2020 SIAM International Conference on Data Mining. Ed.: C. Demeniconi, 118–126, SIAM. doi:10.1137/1.9781611976236.14
Trittenbach, H.
2020, März 2. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000117443
Trittenbach, H.; Böhm, K.
2019. CIKM ’19 Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, November 3-7, 2019, 811–820, Association for Computing Machinery (ACM). doi:10.1145/3357384.3357873
Trittenbach, H.; Bach, J.; Böhm, K.
2019. Information technology, 61 (2-3), 111–123. doi:10.1515/itit-2019-0014
Trittenbach, H.; Englhardt, A.; Böhm, K.
2019. IAL 2019 Interactive Adaptive Learning: Proceedings of the Workshop on Interactive Adaptive Learning co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2019), Würzburg, Germany, September 16th, 2019. Ed.: D. Kottke, 17–31
Schulz, K.; Kreis, S.; Trittenbach, H.; Böhm, K.
2019. Engineering fracture mechanics, 218, Article no: 106552. doi:10.1016/j.engfracmech.2019.106552
Werle, D.; Warzel, D.; Bischof, S.; Koziolek, A.; Trittenbach, H.; Böhm, K.
2019. Tenth ACM International Conference on Future Energy Systems (ACM e-Energy) and its co-located workshops, Phoenix, AZ, United States, 25th - 28th of June 2019, 482–485, Association for Computing Machinery (ACM). doi:10.1145/3307772.3331023
Vollmer, M.; Englhardt, A.; Trittenbach, H.; Bielski, P.; Karrari, S.; Böhm, K.
2019. Tenth ACM International Conference on Future Energy Systems (ACM e-Energy) and its co-located workshops, Phoenix, AZ, United States, 25th - 28th of June 2019, 474–481, Association for Computing Machinery (ACM). doi:10.1145/3307772.3331022
Trittenbach, H.; Gauch, M.; Böhm, K.; Schulz, K.
2018. IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1-3 Oct. 2018, 450–459, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/DSAA.2018.00058
Trittenbach, H.; Englhardt, A.; Böhm, K.
2018. arXiv preprint 1808.04759
Trittenbach, H.; Bach, J.; Böhm, K.
2018. 9th ACM International Conference on Future Energy Systems (ACM e-Energy), Karlsruhe, June 12-15,2018
Bischof, S.; Trittenbach, H.; Vollmer, M.; Werle, D.; Blank, T.; Böhm, K.
2018. 9th ACM International Conference on Future Energy Systems, e-Energy 2018; Karlsruhe; Germany; 12 June 2018 through 15 June 2018, 599–603, Association for Computing Machinery (ACM). doi:10.1145/3208903.3210278
Trittenbach, H.; Bach, J.; Böhm, K.
2018. 9th ACM International Conference on Future Energy Systems, e-Energy 2018; Karlsruhe; Germany; 12 June 2018 through 15 June 2018, 399–401, Association for Computing Machinery (ACM). doi:10.1145/3208903.3212038
Trittenbach, H.; Böhm, K.
2018. International Journal of Data Science and Analytics. doi:10.1007/s41060-018-0137-7
Bischof, S.; Trittenbach, H.; Vollmer, M.; Werle, D.; Blank, T.; Böhm, K.
2018. International Workshop on Energy Data and Analytics (EDA 2018), Karlsruhe, Deutschland, 12. Juni 2018
Barth, L.; Hagenmeyer, V.; Ludwig, N.; Wagner, D.
2018. doi:10.5445/IR/1000082194
Trittenbach, H.; Gauch, M.; Böhm, K.; Schulz, K.
2018. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000079420